
JOURNAL OF APPROXIMATION THEORY 25, 12-20 (1979)
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Certain entire functions are studied for Chebyshev rational approximations on
the positive real axis. It is shown that each function of this class has a geometric
convergence property.

1. INTRODUCTION

Let 7Tm denote the collection of all real polynomials of degree at most m
and 7Tm,n the collection of all real rational functions rm.n(x) = Pm(x)/qn(x)f
Pm E 7Tm , qn E 7Tn . Let f(z) be an entire function L::=o akzk =1= °with non
negative ak' and let

A.m.n = inf sup I f(Ix ) - rm.n(x) I
TTm,n O<x<oo

denote the Chebyshev constants for Ilf in [0, +00).
In some recent papers Meinardus and Varga [3], Meinardus, Reddy,

Taylor and Varga [4], and others (see [1, 5, 6, 7, 8]) have considered these
constants. In [3] Meinardus and Varga proved the following:

THEOREM A. Let f(z) = I:~o akzk be an entire function of perfectly
regular growth order p(O < P < (0), with nonnegative coefficients. Then

lim \ sup 1_1 I_ll l/n
=_1

n~ro lo<x<ro six) f(x) 2l
/

p
'

where sn(x) = L~~o akxk.

THEOREM B. Assume the hypothesis of Theorem A. Then for any sequence
{m(n)}~~o of nonnegative integers with m(n) ~ n for all n ;? 0

1· {A }l/n 11m sup m(n),n ~21/P .
n...""
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THEOREM C. Assume the hypothesis of Theorem A. Then

1· (\ )l/n 11m sup I\o.n ?: 22+1 / 0 •

n->oo

13

In this paper we place a less restrictive hypothesis on the maximum
modulus M(r,j) and obtain extensions of Theorems A, Band C. The proof
uses Approximation techniques of Meinardus and Varga [3] with modifica
tions necessary to use a wider class of comparison functions.

THEOREM 1.

(a) Let f(z) be an entire function with nonnegative coefficients and
f(O) > O.

(b) Suppose thatf(z) is of order p(O < P < 00) and ofperfectly regular
growth with respect to a proximate order p(r), that is

lim log M(r, f) = 1
r-7'XJ rP(r} ,

lim p(r) = p.
r->'"

(1.1)

Let p(r) > Ofor r ?: xo , and let w be a real valuedfunction defined on [xo , 00)
by the relation

w(p(x) xo(a:l) = l!p(x).

(c) Assume that xw(x){log x - log ep} is convex on (xo , 00).

Then

. I I 1 1 II 1
/
n

Ihm sup ----- =-
n~oo 0<:>:<00 Sn(X) f(x) 21

/ 0
'

where sn(x) is the nth partial sum of the series f(x) = L;~o akxk.

I l' \lIn I
22+1 / 0 ~ 1m sup I\o.n ~ 21 / 0 •

n->oo

(1.2)

(1.3)

For any sequence {m(n)}~=o of nonnegative integers with m(n) ~ n for all
n ?: 0,

lim sup(Am(n).n)l/n ~ 2~/0 .
n->oo

(1.4)

COROLLARY 1.1. Assume the hypotheses (a) and (b). If p"(x) exists and
is 0(l!x2 10g x) as x -- 00, then the condition (c) is satisfied and the conclusions
(1.2), (1.3) and (1.4) hold.

Let lkx denothe the kth iterate of the logarithmic function IIx = log x.
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COROLLARY 1.2. Assume the hypothesis (a). If

a's are any real numbers) then the conclusions (1.2), (1.3) and (1.4) hold.

In the sequel n > no (or x > xo) will mean that n (resp. x) is sufficiently
large. The value no (or xo) will in general vary.

2. PROOF OF THEOREM 1

(i) It is known that [9; pp. 209-210] w(x) is continuous on [xo, (0) and
x = {yw(y)}wl ll ). Further w(x) is differentiable for x> Xo except at isolated
points at which w'(x - 0) and w'(x + 0) exist and satisfy

lim w(x) = lip,
x->oo

lim xw'(x) log x = O.
x->oo

(2.1)

(2.2)

Letf(z) = L;=o akzk. Given E> 0 we have [9] for all n > no(xo , E),

a~/n < (1 + E) l:pl-w<n),

and there exists a sequence {n p } of strictly increasing positive integers such
that limp->oo np +lln1) = 1 and (writing an = a(n1»))'

"

p = 1,2,... (2.3)

Now, for n > no ,

1 1 \ 00 (ep)kW<k)! 1
o~ six) - f(x) ~ 12~+1 (1 + E)k k X

k
\ sn(x)f(x) .

Write, for n > no ,

X n __1_ (n + 2)ln+2)w<n+2) (~)ln+l)Wln+l)

( ) - 1 + E ep n + 1 '

(
-n ) x8n = exp log n ,T* = X(n) and let 0 ~ x ~ X(n)(l - 8n)·

Using the convexity hypothesis we have

III ( ep )<n+Uw<n+l) 1 I 1
sn(x) - f(x) ~ (x(1 + e))n+l n + 1 1 - T*l sn(x)f(x)' (2.4)
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Let n be odd, n + 1 = 2np • Then

{s,,(x)}2 ~ a2(n p)x2
"p

w(2np ) - w(n p ) = 0 (-1-1-),og np

m(n + 2) - w(n + l} = 0 (_]1_),
n og n

15

(2.5)

From (2.3), (2.4) and (2.5) we have for 0 ~ x ~ X(n)(l - 8,,), n = 2np - 1,

P >n01

(_1 ]_)1/" :s:::: (1 + €)2 (1 + €) ex I -2npw(np) log 2/. (2.6)
six) I(x) '" 1 - € P / 2np - 1 I

If x > X(n)(l - S,,~, J1 = 2n p - 1, we have

(
1 I )1/"

s,,(x) =I(x) ~ (a(np )x,,")-I /"

~ ~xp f2n~n:P 1 (log X(n) + log(l - 8,,) - log 1~ €

- w(n p ) (log n p - log ep»1. (2.7)

Now

1
log X(I1) - w(np)(log fl p - log ep) = log 1 + € + m(np)(l + log 2) + 0(1),

and

exp f- 2~ (l + log 2)1 < exp ( -l~g 2 ).

Hence we have from (2.1), (2.6) and (2.7), for x ;?; 0

. 11 1 1 [ll /" ( -log 2 )
l~::~~ s:N - f(x) ~ exp p .

p
p->oo

Now write for n > no,

then since G" t and np+1 """""11 , we get from (2.8) (cf: [3J),

(2.8)

(2.9)

,", I' 1 1 11
11

" ( -,-log 2 )h~....:Up s,,(x) - I(x) ~ exp p' (2.10)
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(ii) Let ef>(t) be the unique (for t > xo) solution of the equation

t
2p = x"(",). (2.11)

Then for t > xo(e),

f(ef>(t)) ~ exp{(l + E) ef>(t)o«;(t))} = exp !(l t
p
e)tl.

Hence for 0 ~ x ~ ef>(n), n > no,

o~ f(x) ~ f(ef>(n)) ~ exp l(l + e) ~l·

Let q be any positive number such that

lim sUP(-\.n)l/n < ! .
n"'ex:> q

(2.12)

From part (i) we can take log q > (1 + e)/2p. Hence for 0 ~ x ~ ef>(n),
f(x) < nq

• Now (2.12) implies that -\0... ~ (l/q)n for n > no. Hence there
exists {P..(x)];;'=o with P.. E 7Tn such that

n > no.

This gives, for 0 ~ x ~ ef>(n), n > no,

IPn(x) - f(x)1 ~ exp (~(l + e)))!lq" - exp (;p (1 + E))l. (2.13)

Let, for n ~ 0,
Kn = inf sup I r..(x) - f(x)l.

rnE"n o';;",';;</>(n)

Then (cf: [3])

Now, for a sequence {nk}, k ~ 1 [9], n = nk'

lep!("+1)w(n+1)
a(n + 1) ~ (l - e)n+l fn

Hence we have for n = nk , n > no ,

l
epl (n+l)w(n+l)

(1 - E)n+l -
n

(2.14)
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which simplifies to

17

n log q ::;;; '!. (1 + e) - (n + 1) log(l - e) + (n + 1) w(n + 1) I10g!!-1
p ep

+ (2n + 1) log 2 - (n + 1) log ep(n). (2.15)

Let tf;(T) be the unique solution (for T > xo) of the equation

T- =Xp("'l.
P

Then for n = pXP("'l == pxPL(x) we have x = tf;(n); and for n > no ,

W(P(X)Xp("'l) = w(n) + 0 ( 1 log L(tf;(n)))
log tf;(n) log n '

and so

w(n) = w(p(X)Xp("'l) + 0 (_1_)
log n

= I + log L(x)l-l + 0 (_1_).
P log x log n .

Now
log 2

log tf;(n) - log ep(n) = -- + 0(1),
p

and so

(2.16)

(2.17)

w(n)(log n - log(ep)) - log ep(n) = log 2 - I + 0(1). (2.18)
p

From (2.15) and (2.18) we get

log q ::;;; ! + 2 log 2 + log 2 - 1 + Be
p p

where B = B(P). Since e is arbitrary we get

and consequently, from our choice of q,

lim sup A~:: ? 1/22+1/p.
,....'"

(iii) For x ~ xo, n ? 0,

(2.19)

(2.20)
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We take n = np - 1 and use (2.3). Further, for x > xo,

x n +1

{f(x)}2 ? exp{(n + 1) log x - (2 + e)xPC"'I}. (2.21)

Let x = g(n) (n > no) be the unique solution of the equation

We evaluate the right side of (2.21) when x = g(n), and note that

W(pXPC"'I) = _1_ + 0 (_1_)
p(x) log x '

(log n) Ip(g~n» - w(n)l = 0(1).

Hence at the point x = g(n), n = np - 1,

_1 1_:;::" (1 _ e)np ex l-npw(nv)(log np -log ep)l
six) f(x) y- p l-t-n p log g(n) - npjp ,"

Now log g(n) = (log(n + 1) - log(2 + e) - log p)/p(g(n», and so

1)
_1_ - _l_ll1/n ? (1 - etplnp-l exp j-Iog(2 + e) + 0(1)1.
sn(x) I(x) p

Hence by (2.9)

lim inf G~/n ? exp I-lOg 2 I.
n=np-l P I

p-.oo

(2.22)

lim inf G~/n ? exp ( -log 2 ).
n->oo p

(2.23)

The rolation (1.2) follows from (2.10) and (2.23), and (1.3) from (2.10)
and (2.19), and (1.4) from (2.10), since 0 ~ An •n ~ An-1.n ~ ... ~ Ao... ::;;; Gn •

3. PROOF OF COROLLARY I.l

Since pl/(x) exists (this hypothesis implies that we are working with a
smaller class of proximate orders (cf: [2, pp. 39-41]), p'(x) exists and is
o(1/x log x). Now if y = p(x) XO<Zl and w(y) = l/p(x), we get dw(dy =
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o(ljy log y), d 2wjdy 2 = 0(ljy2 log y), y -+ 00. Now let g(x) = xw(x)
(log x - log ep), then for x > xo , d2g/dx2 > O. This implies that condition (c)
is satisfied.

Proof of Corollary 1.2. Here

Hence p"(x) = 0(ljx2 10g x) and so we use Corollary 1.1 to complete
the proof.

4. GEOMETRIC CONVERGENCE

If we are interested in geometric convergence only, that is, in showing that

lim sup >,11'" < 10*11 ,
",""ex> (4.1)

then conditions less restrictive than those of Theorem 1 will suffice. We
state them, in Theorem 2, and omit the proof of this theorem (cf: [4, pp.
180-182]). Let L(r) be a slowly changing function [2, p. 32].

THEOREM 2. Let f(z) be an entire function with nonnegative coefficients,
and f(O) > 0, and of finite positive order p. If for some slowly changing
function L(r),

o< lim inf log M(r, f) ~ lim sup log (Mr, f) < 00
r""ex> rPL(r) "" Hex> rpL(r) ,

thenf(z) has the geometric convergence property (4.1).
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